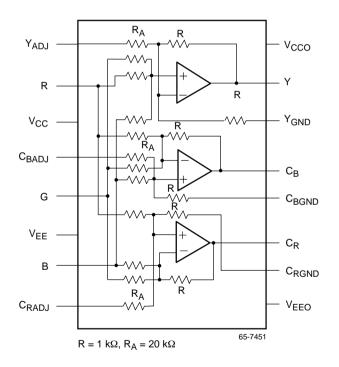
RC6702 RGB to Y, CR, CB Transcoder

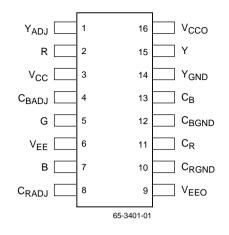
Features

- RGB to Y, CR, CB matrix, meets CCIR 601-1
- Thin film gain setting resistors
- External gain adjustments pins
- 60 MHz -3 dB bandwidth
- 10 MHz 0.1 dB gain flatness
- 0.06 % differential gain, $R_L \ge 150 \Omega$

- 0.06° differential phase, $R_L \ge 150 \ \Omega$
- 300 V/µS slew rate
- Dual ±5 V power supply
- Low power consumption: 70 mW per amplifier
- 16 pin SO package
- Low offset: 3.0 mV


Description

The RC6702 contains three low power, wide bandwidth voltage feedback amplifiers. Internal thin film resistors perform the RGB to Y, C_R, C_B matrixing. The RGB to Y, C_R, C_B matrix is normalized to a gain of two for use in back-terminated video applications. (The sum of the absolute values of R, G and B components in a row is equal to 2.) The matrix gain accuracy is better than 1.0% and the gain temperature drift is below 25 ppm/°C.


Each transcoder has a 60 MHz bandwidth and is flat to ± 0.1 dB to 10 MHz. If required, three adjustment inputs allow trimming of the Y gain and CR, CB white balance to accuracies better than 0.5%. A 20k Ω potentiometer between +V and -V is required, together with a 50 k Ω series resistor to adjust these offsets (see application circuit).

The pinout and layout of the RC6702 minimizes the crosstalk between channels. Each amplifier can drive 35 mA to the load.

Block Diagram

Pin Assignments

Pin Definitions

Pin Name	Pin Number	Pin Function Description
CBADJ	4	CB Matrix Adjustment Pin
CRADJ	8	C _R Matrix Adjustment Pin
YADJ	1	CR Matrix Adjustment Pin
В	7	B Input
G	5	G Input
R	2	R Input
Св	13	CB Output
CR	11	C _R Output
Y	15	Y Output
Vcc	3	+5V Supply
Vcco	16	+5V Output Supply
VEE	6	-5V Supply
VEEO	9	-5V Output Supply
Ygnd	14	Y Analog Ground
CBGND	12	CB Analog Ground
Crgnd	10	CR Analog Ground

Absolute Maximum Ratings

(beyond which the device may be damaged)¹

Parameter	Min	Тур	Max	Units		
Positive power supply, VCC			7	V		
Negative power supply, VEE			-7	V		
Differential input voltage			0	V		
Operating Temperature	0		+70	°C		
Storage Temperature	-40		+125	°C		
Junction Temperature			150	°C		
Lead Soldering Temperature (10 seconds)			300	°C		
Operating Temperature	0		+70	°C		
Short circuit tolerance: No more than one output can be shorted to ground.						

Note:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

Operating Conditions

Parameter		Min	Тур	Max	Units
Vcc	Power Supply Voltage	4.75	5.0	5.25	V
VEE	Negative Supply Voltage	-4.75	-5.0	-5.25	V
θJA	SO16 Thermal Resistance		105		°C/W

DC Characteristics

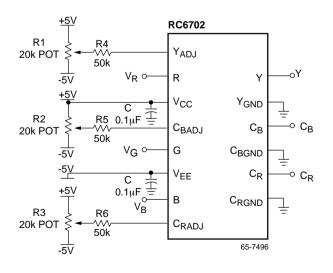
 $V_{CC} = 5V$, $V_{EE} = -5V$, $A_V = 2$, $R_{LOAD} = 150\Omega$, $T_A = 0^{\circ}C$ to $70^{\circ}C$, unless otherwise specified. Open Loop.

Parameter		Conditions	Min	Тур	Max	Units
Vos	Input Offset Voltage	No load		±2	±7	mV
$\Delta VOS/\Delta T$	Offset Voltage Drift ¹			±12		μV/°C
IB	Input Bias Current ¹			±2	±10	μΑ
$\Delta IB/\Delta T$	Input Bias Current Drift ¹			±10	±50	nA/°C
Rin	Input Resistance ¹		1			MΩ
Cin	Input Capacitance ¹			0.5	2	pF
CMIR	Common Mode Input Range		±2.5			V
PSRR	Power Supply Rejection Ratio	No Load	60	70		dB
ls	Quiescent Supply Current	No Load, Whole IC		25	35	mA
Rout	Output Impedance ¹	Enabled, at DC		0.2		Ω
IOUT	Output Current		35			mA
Vout	Output Voltage Swing	No load	±2.5	±3.0		V
		RL=150Ω	±2.5	±3.0		V
Y	White Balance: Gain	R = G = B = 1Vpp	1.97	2.0	2.03	Vpp
Cr, Cb	White Balance, Residual Chroma	R = G = B = 1Vpp	-10	0.0	+10	mVpp
$\Delta A_V / \Delta T$	Closed-loop Gain Drift ¹		25			ppm/°C
Resistor M	Atrix Characteristics					
Av	Matrix Gain Accuracy		-1.0		+1.0	%
ΔΑν/ΔΤ	Matrix Gain Drift ¹			20		ppm/°C

Note:

1. Guaranteed by design.

AC Characteristics


VCC = 5V, VEE = -5V, RLOAD = 150Ω , Av = 2, TA = 0 to 70° C, CL = 10 pF unless otherwise specified.

Parameter		Conditions	Min	Тур	Max	Units
Freque	ncy Response	4			II	
BW	-3 dB Bandwidth $(Av = 2)^1$	VOUT = 0.4 Vpp		60		MHz
		VOUT = 0.8 Vpp		55		MHz
Flat	±0.1 dB Bandwidth ¹		10	15		MHz
Peak	Maximum Small Signal AC Peaking ¹			0.4		dB
Time D	omain Response					
td	Matrix Delay ¹			20		ns
Δtd	Output's Skew ¹			2		ns
tr1, tf1	Rise and Fall Time 10% to 90% ¹	2V Output Step		7	10	ns
ts	Settling Time to 0.1 % ¹	2V Output Step		35		ns
OS	Overshoot ¹	2V Output Step		6		%
US	Undershoot ¹	2V Output Step		1.5		%
SR	Slew Rate ¹	$V_{OUT} = \pm 2.0V$	200	300		V/μs
Distort	ion					
HD ₂	2nd Harmonic Distortion ¹	Vout = 0.8 Vpp, @ Fo = 20 MHz		-50		dB
HD3	3nd Harmonic Distortion ¹	Vout = 0.8 Vpp, @ Fo = 20 MHz		-50		dB
Equiva	lent Input Noise					
NF	Noise Floor > 100 KHz ¹			-140		dBm
SND	Spectral Noise Density ¹	100 kHz to 200 MHz		10		nV/√Hz

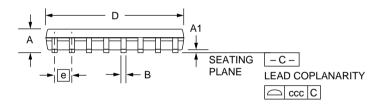
Note:

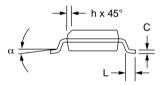
1. Guaranteed by design.

Typical Application Circuit

RGB to Y, CB, CR matrix, normalized to 2

_	R	G	В
Y	+0.299	+0.587	+0.114
Св	-0.169	-0.331	±0.5
CR	+0.5	-0.419	-0.081


Mechanical Dimensions – 16-Lead SOIC


Symbol	Inches		Millim	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes
А	.053	.069	1.35	1.75	
A1	.004	.010	0.10	0.25	
В	.013	.020	0.33	0.51	
С	.008	.010	0.19	0.25	5
D	.386	.394	9.80	10.00	2
E	.150	.158	3.81	4.00	2
е	.050	BSC	1.27	BSC	
Н	.228	.244	5.80	6.20	
h	.010	.020	0.25	0.50	
L	.016	.050	0.40	1.27	3
Ν	1	6	16		6
α	0°	8°	0°	8°	
CCC	—	.004	_	0.10	

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. "C" dimension does not include solder finish thickness.
- 6. Symbol "N" is the maximum number of terminals.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
RC6702M	0° to 70°C	Commercial	16 Pin Narrow SOIC	RC6702M

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics Semiconductor Division 350 Ellis Street Mountain View CA 94043 415 968 9211 FAX 415 966 7742